top of page

Research Blog

Search
  • anandvikky90

Updated: Jan 30, 2021


The coalescence of water drops, dispersed in oil, is critical to the destabilization of a water-in-oil emulsion under an electric field. In this work, we determine the conditions for coalescence or non-coalescence of two aqueous water drops that are suspended in an insulating oil and subjected to a uniform electric field. Drop–interface interaction under an electric field is relevant in commercial desalters wherein water droplets suspended in oil coalesce under an electric field, move down under gravity, and eventually coalesce with the water pool at the bottom of the desalter.







Updated: Jan 30, 2021





Electrocoalescence is modelled using dipolar electrostatic forces which bring the droplets together but are resisted by Stokesian drag forces. We demonstrate that hydrodynamic interactions are important to model electrocoalescence. Similarly, a multi box methodology is necessary for getting improved statistics for drop size distribution, since any coagulation/coalescence process, typically results in the loss of droplets. Moreover, the process of chaining can be modelled by assuming a “wait-time” on contact of the interacting drops, and n-mer formation can be predicted.


bottom of page